Distributed SDN COntrollers for rich and elastic
services

Agence Nationale de ka Recherche
— ! s { SOLUTIONS
' s‘s‘:lel C \ RANIINICA]
..‘ PARIS REGION SYSTEMS & DC! CIUSTER = -ln -m N m %%Cd'%lsgéeg

ANR-13-INFR-013

M1: New SDN paradigms
analysis and survey of recent
contributions

Software Defined Networks (SDN)

= Separation between Control and Data

= Communication between Control- and
Data-plane (E.g. via OpenFlow protocol)

= SDN Controller ' Middlebox (e.g. Firewall]
E Forwarding device with s Forwarding device with
decoupled control x embedded control Software

Traditional Network Software-Defined Network
(with distributed control and middleboxes) (with decoupled control)

(d i 2

Network Operating System - NOS

= The separated control logic
can be viewed as a Network O
network operating system o o
(NOS).

= Applications can be built to

“program” the network et

___’l Flow Table S

SWITCH

Network Operating System - NOS

= North-Bound Interface
= e.9., Procerq, Frenetic, FML, Nettle.

- SoUth-Bound Inferche HIGH-LEVEL NETWORK
m E.g) Open FlOW, FOrC ES . SERVICE(S) / APPLICATION(S)

I NORTHBOUND COMMUNICATION

SERVICE / CONTROLLER INTERFACE

8 NETWORK CONTROLLER

OTHER SERVICE .| TopoLoGY

. ESSENTIAL = MANAGER MANAGER

| FUNCTIONS

CONTROLLER / SWITCH INTERFACE

SOUTHBOUND COMMUNICATION
(E.G. OPENFLOW)

CONTROLLER / SWITCH

INTERFACE

PACKET FORWARDING DEVICE(S)

di§ 4

OpenFlow

= Flow entries typically consist of:
= (1)match fields, (2)counters,(3)set of instructions

CONTROLLER
OF Protocol
OPENFLOW CLIENT
OPENFLOW
FLOW TABLE _ SWITCH
RULE ACTIONS | STATISTICS
— PORT PORT PORT
1 2 I-I N
Forward fo port(s)
IP src/dst, MAC srcidst, Forward 1o the controller ,
Transport SreDst, VLAN ... Modify fields Packets, Byles, Duration
Drop

di S C

Forwarding Device

« Underlying network infrastructure may involve:

« FORWARDING DEVICE = routers, switches, virtual
switches, wireless access points, etc.

« Challenges:

« “Mice Flows” and “Elephant” Flows.
Ex: Devoflow
Handles mice flow on the switches.
Only contact the controller for Elephant flows.

« Ternary Content-Addressable Memory (TCAM)

Expensive and power-hungry.
« Optimizing memory usage.

d i 6

Software Switches

« Software Switches Implementations compliant with
OpenFlow Standard:

Software Switch Implementation | Overview Version
Open vSwitch [15] C/Python Open source software switch that aims to implement a switch platform v1.0
in virtualized server environments. Supports standard management
interfaces and enables programmatic extension and control of the
forwarding functions. Can be ported into ASIC switches.
Pantouw/OpenWRT [16] C Tums a commercial wireless router or Access Point into an OpenFlow-enabled switch. v1.0
ofsoftswitch13 [12] C/IC++ OpenFlow 1.3 compatible user-space software switch implementation. vl.3
Indigo [7] C Open source OpenFlow implementation that runs on physical switches and uses v1.0

the hardware features of Ethernet switch ASICs to run OpenFlow.

Control Plane - Challenges

« Latency in the control link:

« “Why latency does matter”. In Integrated Network
Management (IFIP/IEEE IM 2013)

« Bandwidth
« arbitrates how many flows can be processed by the controller
e Latency
* major impact on the overall behavior of the network
« “The conftroller placement problem”, HotSDN " 12

« optimal number of controllers and their location in order to reduce
latency.

(d i 8

Control Plane — Challenges (2)

 Centralized vs. Distributed Control Plane

« Controller-to-controller communication is not
defined in OpenFlow

Necessary for distribution and redundancy;
« Physically centralized controller = single point of failure!
« Ex: Onix and HyperFlow
« logically centralized but physically distributed

« Enable communication with local controllers
decreases the look-up overhead
Concern: Maintaining consistency between controllers!

d i 9

Conirol Plane - Challenges (3)

 Centralized vs. Distributed Control Plane
« Ex: Kandoo: Hybrid Approach!

« Uses local controllers for local applications

« Redirects decisions that require centralized network state
to a global controller.

« Advantages:
« reduces the load on the global controller

« Reduces latency for local applications.

« Ex: DISCO: Logically decenftralized
e Intfer domain e infra domain communication

d i 10

Control Plane - Challenges (4)

« Conirol Granularity

« Control can be further abstracted to an
aggregated flow-match;

« Flow aggregation may be based on:
« source, destination, application, etc.

11

Conirol Plane - Challenges (5)

« Reactive vs. Proactive Policies
« Reactive: (e.g. Ethane)

« forwarding elements must consult a controller
each time a decision must be made.

« Anissue specially for short lived flows and/or
large networks!

« Proactive: (e.g. DIFANE)

« push policy rules from the controller to the
switches.

« Reduces confrol overhead and latency.

(d i 12

Controller Implementations

« Current Implementations:

Controller Implementation | Open Source Developer

POX [17] Python Yes Nicira

NOX [54] Python/C++ Yes Nicira

MUL [9] C Yes Kulcloud
Maestro [32] Java Yes Rice University
Trema [21] Ruby/C Yes NEC

Beacon |1] Java Yes Stanford

Jaxon [8] Java Yes Independent Developers
Helios | 6] C No NEC
Floodlight [5] Java Yes BigSwitch
SNAC [20] C++ No Nicira

Ryu [18] Python Yes NTT. OSRG group
NodeFlow [10] JavaScript Yes Independent Developers
ovs-controller [15] C Yes Independent Developers
Flowvisor [107] C Yes Stanford/Nicira
RouteFlow [93] C++ Yes CPQD

(d i

13

References

B. Astuto, M. Mendonca, X.N. Nguyen, K. Obraczka, T. Turletti,
A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks”, to appear in IEEE
Communications Surveys & Tutorials, September 2014,
http://hal.inria.fr/hal-00825087 .

